8 research outputs found

    Multivariate multiscale complexity analysis

    No full text
    Established dynamical complexity analysis measures operate at a single scale and thus fail to quantify inherent long-range correlations in real world data, a key feature of complex systems. They are designed for scalar time series, however, multivariate observations are common in modern real world scenarios and their simultaneous analysis is a prerequisite for the understanding of the underlying signal generating model. To that end, this thesis first introduces a notion of multivariate sample entropy and thus extends the current univariate complexity analysis to the multivariate case. The proposed multivariate multiscale entropy (MMSE) algorithm is shown to be capable of addressing the dynamical complexity of such data directly in the domain where they reside, and at multiple temporal scales, thus making full use of all the available information, both within and across the multiple data channels. Next, the intrinsic multivariate scales of the input data are generated adaptively via the multivariate empirical mode decomposition (MEMD) algorithm. This allows for both generating comparable scales from multiple data channels, and for temporal scales of same length as the length of input signal, thus, removing the critical limitation on input data length in current complexity analysis methods. The resulting MEMD-enhanced MMSE method is also shown to be suitable for non-stationary multivariate data analysis owing to the data-driven nature of MEMD algorithm, as non-stationarity is the biggest obstacle for meaningful complexity analysis. This thesis presents a quantum step forward in this area, by introducing robust and physically meaningful complexity estimates of real-world systems, which are typically multivariate, finite in duration, and of noisy and heterogeneous natures. This also allows us to gain better understanding of the complexity of the underlying multivariate model and more degrees of freedom and rigor in the analysis. Simulations on both synthetic and real world multivariate data sets support the analysis

    In Search of an Efficient and Reliable Deep Learning Model for Identification of COVID-19 Infection from Chest X-ray Images

    No full text
    The virus responsible for COVID-19 is mutating day by day with more infectious characteristics. With the limited healthcare resources and overburdened medical practitioners, it is almost impossible to contain this virus. The automatic identification of this viral infection from chest X-ray (CXR) images is now more demanding as it is a cheaper and less time-consuming diagnosis option. To that cause, we have applied deep learning (DL) approaches for four-class classification of CXR images comprising COVID-19, normal, lung opacity, and viral pneumonia. At first, we extracted features of CXR images by applying a local binary pattern (LBP) and pre-trained convolutional neural network (CNN). Afterwards, we utilized a pattern recognition network (PRN), support vector machine (SVM), decision tree (DT), random forest (RF), and k-nearest neighbors (KNN) classifiers on the extracted features to classify aforementioned four-class CXR images. The performances of the proposed methods have been analyzed rigorously in terms of classification performance and classification speed. Among different methods applied to the four-class test images, the best method achieved classification performances with 97.41% accuracy, 94.94% precision, 94.81% recall, 98.27% specificity, and 94.86% F1 score. The results indicate that the proposed method can offer an efficient and reliable framework for COVID-19 detection from CXR images, which could be immensely conducive to the effective diagnosis of COVID-19-infected patients

    Multivariate Multiscale Entropy for Brain Consciousness Analysis

    No full text
    The recently introduced multiscale entropy (MSE) analysis accounts for the complexity over multiple time scales and therefore can reveal the complex structure of the biological signal. The existing MSE algorithm deals with scalar time series whereas multivariate time series are common in experimental and biological systems. To that cause, the MSE method is extended to multivariate case in this paper. Simulation results to characterize brain consciousness supports the efficiency of this holistic approach

    An investigation to study the effects of Tai Chi on human gait dynamics using classical machine learning

    No full text
    Tai Chi has been proven effective in preventing falls in older adults, improving the joint function of knee osteoarthritis patients, and improving the balance of stroke survivors. However, the effect of Tai Chi on human gait dynamics is still less understood. Studies conducted in this domain only relied on statistical and clinical measurements on the time-series gait data. In recent years machine learning has proven its ability in recognizing complex patterns from time-series data. In this research work, we have evaluated the performance of several machine learning algorithms in classifying the walking gait of Tai Chi masters (people expert on Tai Chi) from the normal subjects. The study is designed in a longitudinal manner where the Tai Chi naive subjects received 6 months of Tai Chi training and the data was recorded during the initial and follow-up sessions. A total of 57 subjects participated in the experiment among which 27 were Tai Chi masters. We have introduced a gender, BMI-based scaling of the features to mitigate their effects from the gait parameters. A hybrid feature ranking technique has also been proposed for selecting the best features for classification. The research reports 88.17% accuracy and 93.10% ROC AUC values from subject-wise 5-fold cross-validation for the Tai Chi masters' vs normal subjects' walking gait classification for the "Single-task" walking scenarios. We have also got fairly good accuracy for the "Dual-task" walking scenarios (82.62% accuracy and 84.11% ROC AUC values). The results indicate that Tai Chi clearly has an effect on the walking gait dynamics. The findings and methodology of this study could provide preliminary guidance for applying machine learning-based approaches to similar gait kinematics analyses. 2022 Elsevier LtdThis work was supported in part by the Qatar National Research Fund under Grant NPRP12S-0227-190164 and in part by the International Research Collaboration Co-Fund ( IRCC ) through Qatar University under Grant IRCC-2021-001 . The statements made herein are solely the responsibility of the authors. Open access publication is supported by Qatar National Library.Scopu

    NDDNet: a deep learning model for predicting neurodegenerative diseases from gait pattern

    No full text
    Neurodegenerative diseases damage neuromuscular tissues and deteriorate motor neurons which affects the motor capacity of the patient. Particularly the walking gait is greatly influenced by the deterioration process. Early detection of anomalous gait patterns caused by neurodegenerative diseases can help the patient to prevent associated risks. Previous studies in this domain relied on either features extracted from gait parameters or the Ground Reaction Force (GRF) signal. In this work, we aim to combine both GRF signals and extracted features to provide a better analysis of walking gait patterns. For this, we designed NDDNet, a novel neural network architecture to process both of these data simultaneously to detect 3 different Neurodegenerative Diseases (NDDs). We have done several experiments on the data collected from 64 participants and got 96.75% accuracy on average in detecting 3 types of NDDs. The proposed method might provide a way to get the most out of the data in hand while working with GRF signals and help diagnose patients with an anomalous gait more effectively.This work was supported in part by the Qatar National Research Fund under Grant NPRP12S-0227-190164 and in part by the International Research Collaboration Co-Fund (IRCC) through Qatar University under Grant IRCC-2021- 001. The statements made herein are solely the responsibility of the authors. This open-access publication is supported by Qatar National Library
    corecore